skip to main content


Search for: All records

Creators/Authors contains: "Hong, Young J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Gold‐catalyzed dehydro‐Diels‐Alder reactions of ynamide derivatives allow efficient access to a variety of N‐containing aromatic heterocycles. A dual gold catalysis mechanism was postulated for transformations involving the formation of C−C bonds by reaction between a terminal alkyne and an enynamide fragment. In this article, complete experimental and computational investigations into the mechanism of such a transformation are reported. Support for a dual gold catalysis was found and it was shown that the concerted or stepwise nature of the cyclization event depends on the substitution of the ynamide moiety. The reaction was found to proceed in three stages: 1) formation of a σ,π‐digold complex from the terminal alkyne, 2) cyclization to produce agem‐diaurated aryl complex, and 3) catalyst transfer to free the product and regenerate the σ,π‐digold complex.

     
    more » « less
  2. Abstract

    Sesterterpenoids are a relatively rare class of plant terpenes. Sesterterpene synthase (STS)‐mediated cyclization of the linear C25isoprenoid precursor geranylfarnesyl diphosphate (GFPP) defines sesterterpene scaffolds. So far only a very limited number of STSs have been characterized. The discovery of three new plant STSs is reported that produce a suite of sesterterpenes with unprecedented 6/11/5 and 6/6/7/5 fused ring systems when transiently co‐expressed with a GFPP synthase in Nicotiana benthamiana. Structural elucidation, feeding experiments, and quantum chemical calculations suggest that these STSs catalyze an unusual cyclization path involving reprotonation, intramolecular 1,6 proton transfer, and concerted but asynchronous bicyclization events. The cyclization is diverted from those catalyzed by the characterized plant STSs by forming unified 15/5 bicyclic sesterterpene intermediates. Mutagenesis further revealed a conserved amino acid residue implicated in reprotonation.

     
    more » « less